Performance Measurements for Haptic Actuators

John Morrell

Why is it hard to make haptic systems?

- The human hand is pretty amazing and...
- Actuators are nonlinear
 - Friction
 - Saturation
- Force density is a challenge
 - peak forces
 - peak pressure
 - delivery of power
- Dynamic range is a challenge
 - Min vs. Max forces
- Inertia is always in the way
- Energy density is hard to achieve in portable devices
 - battery life
- Feedback algorithms & sensors vary in effectiveness

Passive System Measurements

- Quasi-static
 - Peak Force (transient)
 - Peak Force (continuous)
 - Force resolution
 - Position resolution
 - Position Range
- Dynamic
 - Unpowered impedance (captures mass, friction, viscous drag)
 - Peak Acceleration (Open loop, driven)
- Easy to measure, predict from specs

Controlled System Measurements

- Quasi-static
 - Force Precision
 - Position Precision
 - Dynamic Range

- Dynamic (The performance we usually care about)
 - Position Bandwidth
 - Force bandwidth
 - Impedance
 - Force Fidelity

Example

• 1 DOF link

- Torque Saturation
- Friction
- Quantization of torque and position
- Finite control bandwidth

Frequency measurements

- Must evaluate at multiple input magnitudes
- Roughly based on a describing function model

Position Bandwidth

$$H(\omega) = \frac{X(\omega)}{X_{des}(\omega)} \bigg|_{F_e = 0}$$

Figure 3: Position Bandwidth of example actuator using an impedance controller at 0.1%, 1%, 10%, and 100% of displacement range.

Unpowered Impedance

$$Z(\omega) = \frac{F_{error}(\omega)}{X_{in}(\omega)}\Big|_{F_{des}=const}$$

Impedance

$$Z(\omega) = \frac{F_{error}(\omega)}{X_{in}(\omega)}\Big|_{F_{des}=const}$$

Figure 6: Impedance (Backdrivability), $Z(\omega)$, for example actuator at 0.1%, 1%, 10%, and 100% of displacement range. Impedance bandwidth may defined as the frequency where the force error begins to increase with frequency.

Force Bandwidth

$$H(\omega) = \frac{F_e(\omega)}{F_{des}(\omega)}\Big|_{X_e=0}$$

Figure 5: Force Bandwidth at 1%, 10%, and 100% of L Σ

Force Fidelity

Figure 7: Force Fidelity Example - These three graphs show examples of force vs. time. The values of Force Fidelity for these graphs are 0.99, 0.86, and 0.74. Distortion is 1%, 14%, and 26% respectively.

Force Fidelity

Force Fidelity =
$$\frac{T^T RA}{T^T T}$$

where

T =sampled signal

$$R = \left[\sin(\omega t) \cos(\omega t) \right]$$

$$A = \begin{bmatrix} C_1 & C_2 \end{bmatrix}^T = (R^T R)^{-1} R^T T$$

Figure 8: Force Fidelity at 0.1%, 1%, 10%, and 100% LTPKF for example actuator ($F_{des} = 0$). Note that friction makes force fidelity very low for small forces (0.1% LTPKF)